Kommunale Wärmeplanung und was danach?

Praxisnahe Einblicke in die Projektentwicklung und Umsetzung mit GP JOULE

Vorstellung

Kontaktieren Sie uns gerne für ein Gespräch:

04671 6074-707

u.dietrich@gp-joule.de

04671 6074-806

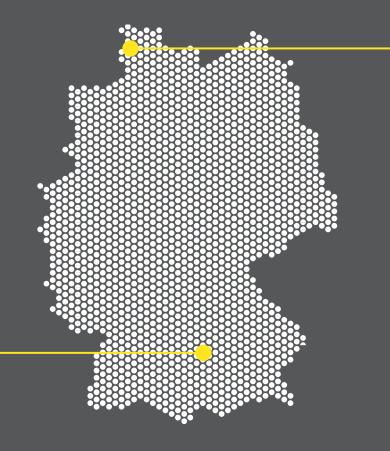
k.mielck@gp-joule.de

www.gp-joule.de

Agenda

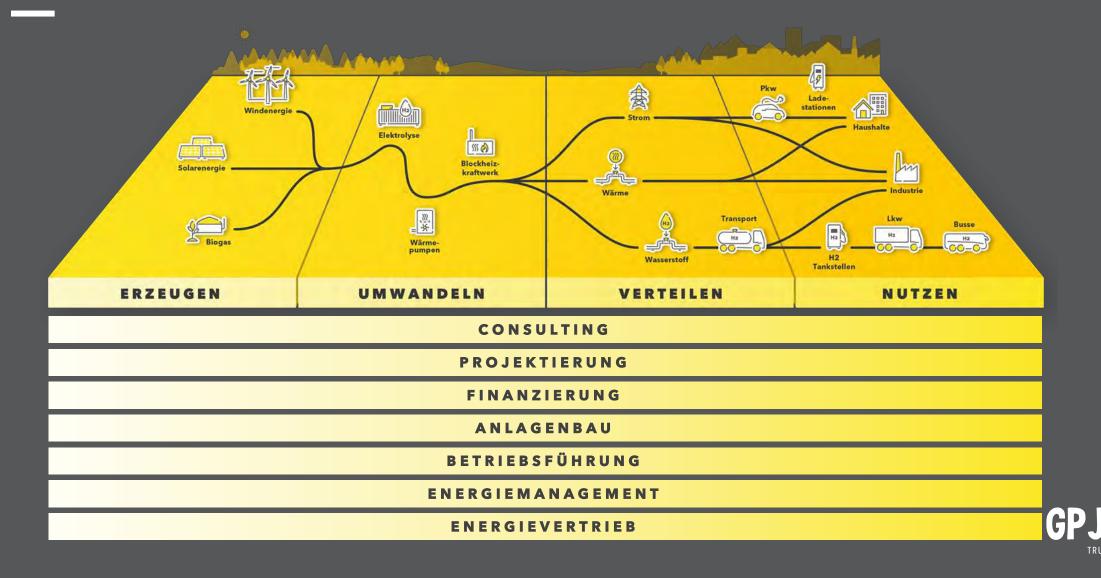
- 1. Warm werden Kurze Vorstellung von GP Joule
- Von der kommunalen Wärmeplanung zum Wärmenetz
- Großwärmepumpen als Schlüssel für nachhaltige und wirtschaftliche Wärmenetze am Praxisprojekt Mertingen.

Warm werden!

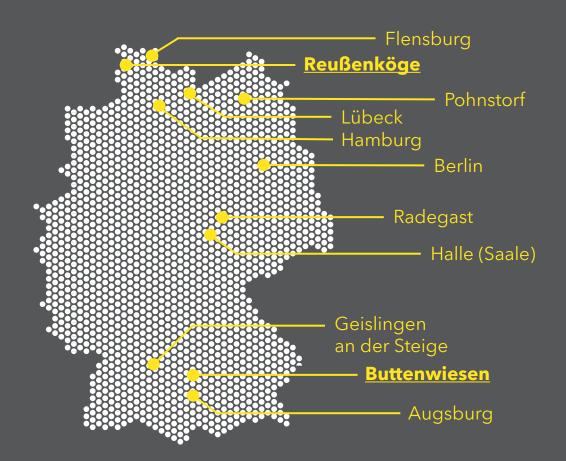


Die Gründer

Die **Gründer** von GP JOULE, Heinrich Gärtner und Ove Petersen, entwickeln bereits seit mehr als 19 Jahren Projekte im Bereich der Erneuerbaren Energien.



Ihr landwirtschaftlicher Hintergrund erklärt die Vielfalt an Standbeinen, das Entwickeln von Wertschöpfung sowie die **nachhaltige** Herangehensweise von GP JOULE.



GP JOULE entwickelt, baut und betreibt Energielösungen in allen Bereichen der Wertschöpfungskette.

GP JOULE Gruppe: Standorte & Zahlen

Frankreich, Österreich, Irland, Italien, Kanada und USA

2009 Gründung

1.600+ MWKraftwerksleistung installiert

1.000+
Mitarbeiter*innen

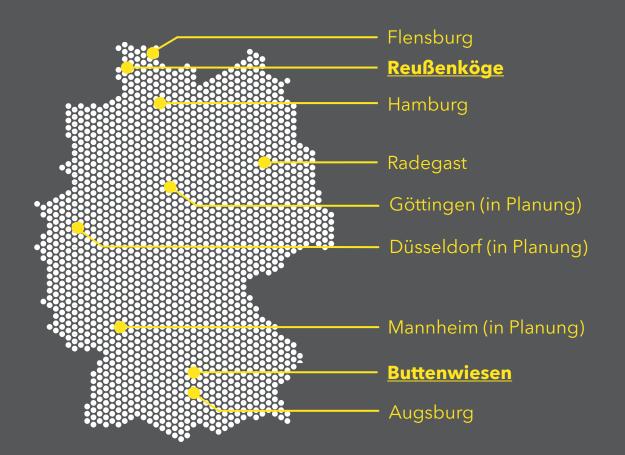
22Wärmenetze
in Bau und Betrieb

1,85 GWp in der Betriebsführung

2.000+
Ladeinfrastrukturprojekte
umgesetzt

Windparkprojekte installiert

grüne Wasserstoff-Tankstellen mit 6 Elektrolyseuren


150+Solarprojekte installiert

Erster dynamischer Stromtarif für Gewerbekunden bei verivox

GP JOULE WÄRME: Standorte & Zahlen

2009 Gründung

15+Jahre Erfahrung

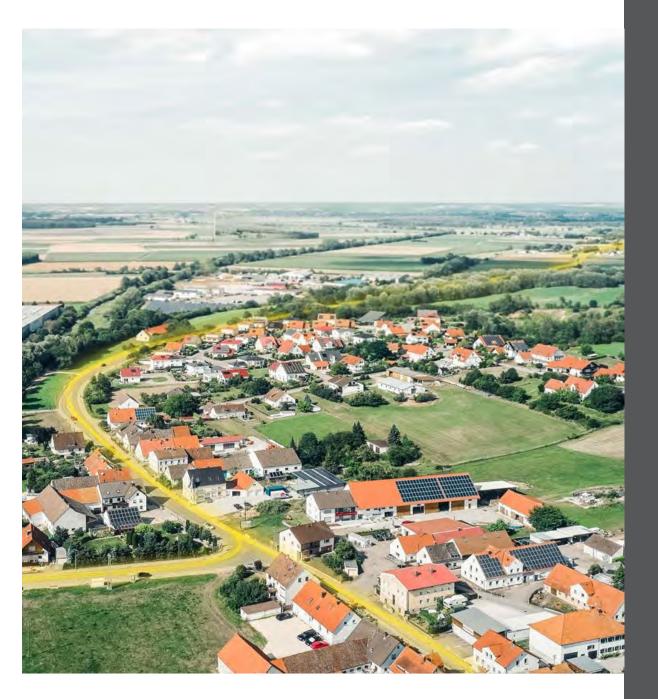
9 Bürostandorte

200+Mitarbeiter*innen

22+Wärmenetze in Betrieb

50+Wärmenetze in Bau oder Planung

100+ KM Wärmerohr verbaut


22+ MWinstallierte
Wärmeleistung

Von der kommunalen Wärmeplanung zum Wärmenetz?

Was leistet ein Wärmeplan?

Basierend auf der bestehenden
Wärmeversorgung vor Ort und den
wirtschaftlichsten Lösungen für eine
klimaneutrale Wärmeversorgung, erfolgt
die Entwicklung einer ganzheitlichen
Strategie für die nachhaltige
Transformation des Versorgungssystems.

Bestandteile der kommunalen Wärmeplanung

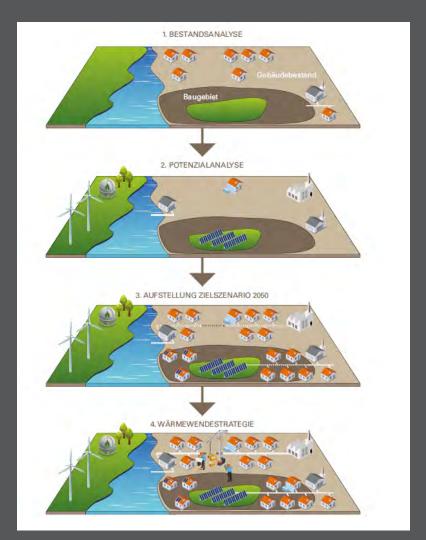
1 Bestandsanalyse

- Wärmebedarf oder -verbrauch und Treibhausgasemissionen
- Gebäudetypen und Baualtersklassen, aktuelle Versorgungsstruktur

2. Potenzialanalyse

- Potenziale erneuerbarer Energien zur Wärmeversorgung
- Potenziale zur Senkung des Wärmebedarfs

3 Zielszenario


- 🚡 Szenario zur zukünftigen Entwicklung des Wärmebedarfs
- Flächenhafte Darstellung der zur klimaneutralen Bedarfsdeckung geplanten Versorgungsstruktur mit dem Zieljahr 2045

4. Kommunale Wärmewendestrategie mit Maßnahmenkatalog

- Einteilen von Quartieren, Priorisierung
- Dezentrale und zentrale Wärmeversorgung

5. Akteursbeteiligung

- Beteiligung relevanter Akteure und aller Bürger*innen vor Ort
- Gemeinsame Erarbeitung von Maßnahmen und Lösungen

Szenarienentwicklung: Prototypischer Ablauf

Von technischem Potenzial zu realisierbaren Zielszenarien: Beispiel Dothmark

Auswahl von Fokusgebieten auf Basis der Bestands- und

Basis der Bestands- und Potenzialanalyse

2.

Bewertung des realisierbaren Potenzials in den ausgewählten Gebieten

- ✓ Dach-PV
- Abwärme (Industrie / Abwasser)
- × Wind
- × Geothermie
- × PV Freifläche
- × Biomasse

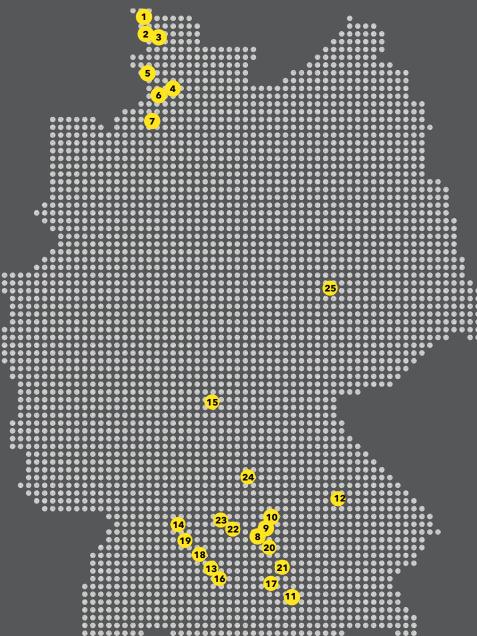
3.

Entscheidung über Eignungsgebiete für Wärmenetze und Einzelheizungen

Wärmenetze mit Zukunft - Fokus Power-to-Heat

WÄRME

STROM


Großwärmepumpen als Schlüssel für nachhaltige und wirtschaftliche Wärmenetze am Praxisprojekt Mertingen

Referenz GP JOULE Wärmenetze

- 8 Buttenwiesen
- 9 Mertingen
- 10 Asbach-Bäumenheim
- 11 Starnberg
- 12 Tegernheim
- 13 Holzheim
- 14 Bad Boll
- 15 Dittelbrunn
- 16 Pfaffenhofen a. d. Roth/Beuren'
- 17 Scheuring
- 18 Dornstadt Tomerdingen
- 19 Hohenstadt
- 20 Kühlenthal
- 21 Adelzhausen
- 22 Wittislingen
- 23 Zöschingen
- 24 Markt Heidenheim
- 25 Südliches Anhalt

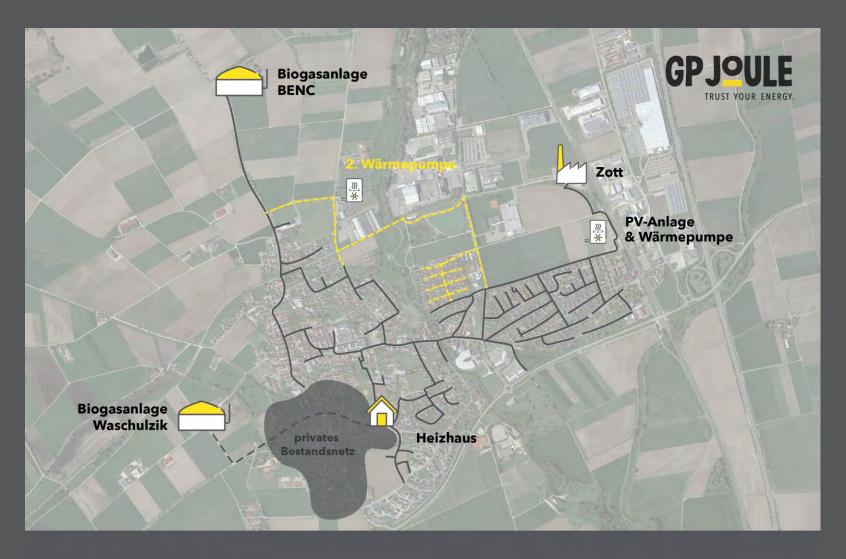
....

- 1 Bosbüll
- 2 Bordelum
- 3 Haselund
- 4 Wacken
- 5 Neuenkirchen
- 6 Buchholz
- 7 Drochtersen

Referenzprojekt: ProTherm Mertingen.

Eckdaten:

- 12km Netzlänge
- _ 254+ Wärmeabnehmer
- 9 GWh/a Wärmeabsatz
- _ 5,1 MW Erzeugerkapazität
- _ 224m³ Speicherkapazität


Wärmequellen:

- _ Bioabfallvergärungsanlage
- _ Biogasanlage
- ZOTT
- Heizhaus
- Großwärmepumpe in Kombination mit einer PV-Anlage

Entwicklung des Wärmenetzes in Mertingen

Großwärmepumpe ProTherm Mertingen

- 2x Wärmepufferspeicher mit je 84 m³
 - 3 bar Druck
- ² Container
 - Wärmepumpe mit bis zu 1MW Leistung
 - Zusätzliche Anlagentechnik
 - Mess-Steuer-Regelungstechnik
- 3 2x Trockenrückkühlwerk
- ⁴ Transformator
- 5 750 kW Photovoltaik Freiflächenanlage

GPJOULE TRUST YOUR ENERGY.